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Gilsonite Dike, Uinta Basin, NE Utah













Topics

m West Virginia Gas Shale Case History

m Production Behaviors of Simple and Complex Hydraulic
Fractures

m Fracture Complexity and EGS
m Oak Ridge Example for Contemplation
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West Virginia Gas Shale
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Eastern Gas Shale Overview

® Image logging

m Tracer testing

Air drilling and nitrogen
fracturing

Conventional
microseismics

Flow logging using %
natural gas in the drilling
returns from quadrupole
mass spectrometer

Tomographic Fracture
Imaging (TFI)




Drilling Gas Monitoring and Production Log

Spinner (rps, 5ft moving average)

% gas in return drilling air (5ft moving average)
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TFI™ Shows Affected Volume Larger than
That Shown by Conventional Microseismics

Conventional
Microseismics

3 miles

Tomographic Fracture Imaging (TFI ™) Global s s
Geophysical Inc. @Associalt.es



% Tracer Responses
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Discrete Fracture Network Model
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Pressure From Production
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Production from Simple Hydraulic
Fractures
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Linear Flow (Geometric)

AN
N

Fracture
Linear Flow

Matrix
Linear Flow

Log Pressure

Log Time

Linear Flow:
Parallel flow lines
Pressure square-root with time

Depletion:
Producing from closed system
Pressure linear with time
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Tri-Linear Flow Regimes

Formation
Formation Radial
Linear |
2
Matrix Matrix
Linear Stage Depletion

2

Log Pressure
Derivative

Fracture Fracture
Linear Depletion
Fracture Radial
Log Time

Half-slope linear flow regimes separated by
restricted-flow boundary transitions

Ozkan E., M. Brown, R. Raghavan, and H. Kazemi, 2011, Comparison of fractured horizontal well
performance in tight sand and shale reservoirs. SPE Reservoir Evaluation & Engineering, SPE-121290

Song, B., and C. Ehlig-Economides, 2011, Rate-normalized pressure analysis for determination of shale
gas well performance. SPE 144031 e =
A
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Tri-linear Flow |: Fracture Linear Flow

&

Pressure Effects
Reach End
of Fracture
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Fracture Infinite
Acting Linear Flow

Fracture Depletion
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Steady Flow)

Log Pressure
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Tri-Linear Flow Il: Matrix Linear Flow

Matrix
Linear Flow

Symmetry

Hydrofrac
Boundary
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Tri-Linear lll: Formation Linear and Radial Flow

Formation - Linear Formation
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Simple Single Hydraulic Fractures
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Production from Complex Hydraulic
Fractures




DFN Stimulation Simulation
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Hydrofrac Generation
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Fracture Network Models
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Pressure Drawdown in Complex Networks
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Deconvoluted Production Data

Derivative Deconvoluted Pressure

1.E+

o KRB N W b~ 01O

nn

o
05 06 07 08 09 1 More -
Late Time Derivative Slope ot

1.E+

o, o
¥y, | (o0t

PR
4
q 000,00 o0 o
l Ot ¢ -
¢+ @ N .

4
1.E+00 B ey s

‘e '¢’ ”X’O

* 034
o*
.

> »

oed®’y 2 A
R .

S
[oee¥ 9 - .
AP LN *
o ®04lyobet

1.E-01
1.E+00 1.E+01 1.E+02 1.E+03

Time, days




Simulated Derivatives, Complex Fractures
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Production Conclusions

m Equal-spaced fractures of equal size
m Tri-linear flow

m Linear (half-slope) and Depletion (unit-slope) behaviors
for the hydrofracs, matrix, and entire stimulated volume

m Realistic hydraulic fractures involved networks of both
hydraulic fractures and stimulated natural fractures

m Matrix block sizes are variable which obscures transitions
from fracture to matrix flow

m Derivative slopes between a half and one
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Analytical Solutions — Fluid Flow and Heat Conduction

VOL. 80, NO. 8 JOURNAL OF GEOPHYSICAL RESEARCH MARCH 10, 1975

Theory of Heat Extraction From Fractured Hot Dry Rock

A. C. GRINGARTEN

Bureau Recherches Géologigue et Minéres, Service Géologigue National, Orléans Cedex, France

P. A. WITHERSPOON

Department of Civil Engineering, University of California, Berkeley, California 94720

Yuzo O

Department of Civil Engineering, N .

A theory of heat extraction from fractured hot di . .,
parallel vertical fractures of uniform aperture. Fractuj . .
of homogeneous and isotropic impermeable rock. Co s *
solutions are given in terms of dimensionless paramets Lt B
top of the fractures can be determined. An example d
multiply fractured system provides a more efficient me
hot dry rock.
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EGS Type Curves
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Relatiw
Fperture

Variable Spacing — Variable Aperture
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Thermal-Hydraulic Calculations: Hydrogeosphere




Thermal Results — Variable Spacing and Aperture
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Simulated
Microseismics




Thermal Performance — Realistic Network
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Oak Ridge Hydraulic Fracturing (1963-1984)

m Liquid radioactive
wastes in “old” and

“new” facility o
m 13 injections of :L”

about 200,000 gal =

each i

L n
solidify and

chemically retain I
radionuclides

m Slurry designed to a0
£

S.H. Stowe and C.S. Haase, 1986, Subsurface disposal of liquid radioactive waste at
Oak Ridge, Tennessee, Proceedings of the International Symposium of Subsurface
Injection of Liquid Wastes, New Orleans, p. 656-675, National Water Well Association
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Elevated Pressure in Shallow Monitoring Wells
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= Immediate response
Shallow monitoring { suggests poroelastic
wells (shut in) show rather than diffusive
tens-hundreds of psi effects

Immediate buildu
p S.H. Stowe and C.S. Haase, 1986, Subsurface disposal of liquid radioactive waste at

I NI I Oak Ridge, Tennessee, Proceedings of the International Symposium of Subsurface
d u rl ng I nJ eCtI OnS Injection of Liquid Wastes, New Orleans, p. 656-675, National Water Well Association
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End of Disposal Operation

m Discovery of radioactive
contamination about 1000’
from site (where it was not
expected) 1

m Low concentration (2-4 e
uCuries/l vs vs 76 800
mCuries/l in the waste

m No appearance at o
surface or in water wells 'i-cso

m Confined to shale e

m But still not expected g

m DOE decided in 1986 notto |

seek a license
m Area subject to remediation

efforts
S.H. Stowe and C.S. Haase, 1986, Subsurface disposal of liquid radioactive waste at
Oak Ridge, Tennessee, Proceedings of the International Symposium of Subsurface
Injection of Liquid Wastes, New Orleans, p. 656-675, National Water Well Association
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Take Home Thoughts

m Natural fractures introduce significant variability that is not
accounted for in simple conceptualizations

m Important variability is in block size for controlling fracture-
maitrix interaction

Unconventionals

Conventional Type-Il Reservoirs

Contaminant Transport

EGS

Radioactive Waste

CO2 Sequestration

m There is much we need to understand about these issues
especially if we are develop resources wisely and
sustainably
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Spindletop, 1900’s

“We milked the cow too hard. Moreover she
was not milked too intelligently.”

Captain Anthony Lucas, 1905

Discoverer and developer of the Spindletop field, East
Texas

Quoted by Daniel Yergin, The Prize,
Simon and Schuster. 1991
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